
Bac Pro ELEEC

LYCEE de PAPARA

DR: COURANT DE COURT-CIRCUIT

DOCUMENT RESSOURCE

GENERALITES

La détermination des intensités de court-circuit dans une installation est à la base du dimensionnement d'un réseau.

Elle détermine :

- le pouvoir de coupure des appareils de protection ;
- la tenue des câbles ou des canalisations électriques ;
- la sécurité des personnes et du matériel.

DEFINITION:

Un courant de court-circuit est un courant provoqué par un défaut d'impédance négligeable entre des points d'installation présentant normalement une différence de potentiel (Icc>10In).

Règles à appliquer :

- Pouvoir de coupure > courant de court-circuit : P_{cc} > I_k
- Temps de coupure < température limite des conducteurs (contraintes thermiques (I^2 t)).

Il existe trois méthodes pour le calcul des courants de court-circuit :

- La méthode conventionnelle est utilisable lorsqu'on ne connaît ni le courant de court-circuit à l'origine du circuit, ni les caractéristiques de l'alimentation en amont. Elle permet de déterminer les courants de court-circuit minimaux.
- La méthode de composition est utilisable lorsque l'on connaît ni le courant de court-circuit à l'origine du circuit et que l'on ne connaît pas les caractéristiques en amont. Elle permet de déterminer les courants de court-circuit maximaux.
- La méthode des impédances est utilisable lorsque toutes les caractéristiques de boucle de défaut sont connues, y compris celles de la source d'alimentation. Elle permet de calculer les valeurs maximales et minimales des courants de court-circuit.

La méthode des impédances est à la base de l'élaboration des logiciels de calcul.

PROTECTION CONTRE LES COURTS-CIRCUITS

PROTECTION CONTRE LES COURTS-CIRCUITS MAXI

La protection contre les courts-circuits maxi est assurée lorsque les 2 règles suivantes sont respectées :

1 - RÈGLE DU POUVOIR DE COUPURE

Pdc ≥ lcc

Pdc : pouvoir de coupure du dispositif de protection contre les courts-circuits

lcc : intensité du courant de court-circuit maximum à l'endroit où est installé ce dispositif

MÉTHODE DE CALCUL

Les tableaux C1A et C1B ci-dessous donnent la valeur du courant de court-circuit triphasé aux bornes d'un transformateur HTA/BT en fonction de sa puissance, d'un réseau triphasé 400 V et d'une puissance de court-circuit du réseau haute tension de 500 MVA.

TABLEAU C1A

transformateur immergé dans l'huile (NF C 52 112-1)											
puissance (en kVA)	50	100	160	200	250						
lcc triphasé (en kA)	1,72	3,43	5,47	6,82	8,50						
puissance (en kVA)	315	400	500	630	800						
lcc triphasé (en kA)	10,67	13,50	16,80	21,10	17,88						
puissance (en kVA)	1000	1250	1600	2000							
lcc triphasé (en kA)	22,21	27,54	34,87	43,10							

TABLEAU C1B

transformateur sec (NF C 52 115)											
puissance (en kVA)	100	160	200	250	315						
lcc triphasé (en kA)	2,30	3,65	4,56	5,70	7,2						
puissance (en kVA)	400	500	630	800	1000						
lcc triphasé (en kA)	9,10	11,28	14,16	17,88	22,21						
puissance (en kVA)	1250	1600	2000								
lcc triphasé (en kA)	27,54	34,87	43,10								

Connaissant le courant de court-circuit triphasé à l'origine du circuit (lcc amont), le tableau C3 page 791 permet de connaître le courant de court-circuit triphasé à l'extrémité d'une canalisation de section et de longueur données, donc de déterminer le Pdc de l'appareil de protection placé à cet endroit.

nota:

Lorsque la longueur du circuit L ne figure pas dans le tableau C3, il faut prendre la valeur immédiatement inférieure.

L (tableau) ≤ L (circuit)

Lorsque la valeur de l'Icc ne figure pas dans le tableau C3, il faut prendre la valeur immédiatement supérieure.

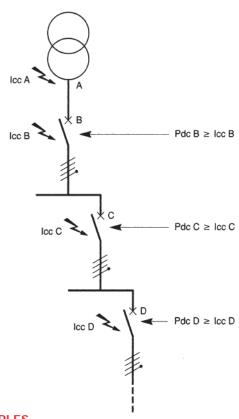
Icc amont (tableau) ≥ Icc origine

2 - RÈGLE DU TEMPS DE COUPURE

$$\sqrt{t} \le \frac{K \times S}{Icc}$$

Le temps de coupure du dispositif de protection ne doit pas être supérieur au temps portant la température des conducteurs à la limite admissible

t = durée en seconde (t max < 5 s)


S = section en mm²

K = coefficient en fonction de l'isolant et de la nature du conducteur d'après le tableau C2 ci-contre

Icc en Ampères

nota:

Cette règle est satisfaite lorsque le même dispositif de protection assure à la fois la protection contre les surcharges et les courts-circuits.

EXEMPLES

point A

- lcc = 20 kA - Pdc_A ≥ 20 kA soit 36 kA pour un HN 160

point B

tableau C3 page 791

- S_{ph} = 95 mm² - L = 90 m

lcc amont = 20 kA

prendre la valeur ≤ 90 m soit 80 m

 $lcc aval_{B} = 7.5 kA$

 $Icc_A = 20 \text{ kA}$ HN 160 Ith 160 A U1000RO2V 4 x 95 mm² L = 90 m lb = 140 A

TABLEAU C2

DEEL.IO OE			
isolant ▶	PVC	caoutchouc	PR, EPR
nature	A ou H05V	A ou H05R	U1000R
▼ A ou H07V	A ou H07R		
cuivre	115	135	143
alu.	74	87	87

PROTECTION CONTRE LES COURTS-CIRCUITS (suite)

PROTECTION CONTRE LES COURTS-CIRCUITS (suite)

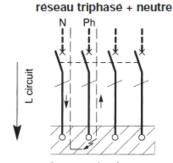
PROTECTION CONTRE LES COURTS-CIRCUITS MINI

Un court-circuit peut se produire à l'extremité d'une ligne. Dans ce cas, il faut prendre en compte le courant le plus défavorable, c'est-à-dire le courant de court-circuit mini, comme l'indique la figure ci-contre. Les conditions d'installation consistent à verifier que le dispositif de protection placé à l'origine de la ligne coupe l'Icc mini dans un temps déterminé, avant la déterioration des conducteurs et de l'installation, et ceci d'après les conditions suivantes :

mlrm < lcc mini pour les disjoncteurs la < lcc mini pour les fusibles

Irm : courant de fonctionnement du magnétique

la : courant de fusion du fusible pour un temps de 5 secondes


Dans la pratique, il suffit de vérifier

L.circuit < L.max.

Les tableaux ci-dessous donnent les longueurs maxi (en mètres) protégées contre les courts-circuits, en fonction des critères suivants :

- conducteurs en cuivre
- réseau triphasé 400 V
- type et calibre du dispositif de protection

réseau triphasé

Icc biphasé Icc monophasé

Pour des caractéristiques différentes, multiplier les valeurs des tableaux par les coefficients C suivants :

- C = 0,58 : si le neutre est distribué et S. neutre = S. phase
- C = 0,38 : si le neutre est distribué et S. neutre = 0,5 S. phase
- C = 0,41 : si les conducteurs sont en aluminium et protégés par fusibles
- C = 0,62 : si les conducteurs sont en aluminium et protégés par disjoncteurs.

Pour les tableaux C8 et C9 concernant les fusibles, lorsque 2 valeurs sont indiquées (ex. : 40/59) :

la 1^{re} concerne les cables type A/H05V... ou A/H07V,

la 2e les cables type A/H05R... ou A/H07R... ou U100R...

TABLEAU C4 — PROTECTION PAR DISJONCTEURS TYPE B

section	courant assigné des disjoncteurs type B (A)												
(mm²)	6	10	13	16	20	25	32	40	50	63	80	100	
1,5	296	178	137	111	89	71	56	44	36	28	22	18	
2,5	494	296	228	185	148	119	93	74	59	47	37	30	
4	790	474	385	296	237	190	148	119	95	75	59	47	
6		711	547	444	356	284	222	178	142	113	89	71	
10			912	741	593	474	370	296	237	188	148	119	
16					948	759	593	474	379	301	237	190	
25							926	741	593	470	370	296	
35	L. max.	en metres _							830	658	519	415	
50										894	704	563	

TABLEAU C 5 - PROTECTION PAR DISJONCTEURS TYPE C

section	courant assigné des disjoncteurs type C (A)													
(mm²)	6	10	13	16	20	25	32	40	50	63	80	100		
1,5	148	89	68	56	44	36	28	22	18	14	11	9		
2,5	247	148	114	93	74	59	46	37	30	24	19	15		
4	395	237	182	148	119	95	74	59	47	38	30	24		
6	593	356	274	222	178	142	111	89	71	56	44	36		
10	988	593	456	370	296	237	185	148	119	94	74	59		
16		948	729	593	474	379	296	237	190	150	119	95		
25				926	741	593	463	370	296	235	185	148		
35	L. max.	en mètres				830	648	519	415	329	259	207		
50		_					680	704	563	446	351	281		

TABLEAU C 6 - PROTECTION PAR DISJONCTEURS TYPE D

section	courant assigné des disjoncteurs type D												
(mm²)	6	10	13	16	20	25	32	40	50	63	80	100	
1,5	74	44	34	28	22	18	14	11	9	7	6	4	
2,5	123	74	57	46	37	30	23	198	15	12	9	7	
4	198	119	91	74	59	47	37	30	24	19	15	12	
6	296	178	137	111	89	71	56	44	36	28	22	18	
10	494	296	228	185	148	119	93	74	59	47	37	30	
16	790	474	365	296	237	190	148	119	95	75	59	47	
25		741	570	463	370	296	231	185	148	118	93	74	
35	L. max. e	n metres	798	648	519	415	324	259	207	165	130	104	
50				880	704	563	440	351	281	223	176	141	

PROTECTION CONTRE LES COURTS-CIRCUITS (suite)

TABLEAU C7 - PROTECTION PAR DISJONCTEURS À USAGE GÉNÉRAL

	In A	63 A	100 A	125 A	160 A		160 A			250 A		32	20 A	400) A
section cuivre	réglage (xin)	fixe	fixe	fixe	fixe	3,5	7	10	3,5	7	10	5	10	5	10
(mm²)	Irm (A)	9,45	1200	1250	1600	560	1120	1600	875	1750	2500	1600	3200	2000	4000
6		31	25	24	19	52	26	29	34	17	12	19	9	15	7
10		52	41	40	31	88	44	31	56	28	20	31	15	25	12
16		84	66	63	18	141	70	49	90	45	31	49	25	40	20
25		131	103	99	77	220	110	77	141	71	49	77	39	62	31
35		183	144	138	108	308	154	108	198	99	69	108	54	86	43
50		261	206	198	164	440	220	154	282	141	94	154	77	123	62
70		366	288	277	216		308	216	395	198	138	216	108	173	86
95			391	375	293		418	293	536	268	188	293	147	235	117
120			494	474	370		529	370		339	237	370	185	296	148
150					403			403		368	257	403	201	322	161
185	L. max. en metres									435	304		238	381	190
240	7												296		237

TABLEAU C8 - PROTECTION PAR FUSIBLES DU TYPE aM

section	courant	courant assigné des fusibles du type aM (A)												
(mm²)	16	20	25	32	40	50	63	80	100					
1,5	55/64	37/45	25/30	15/20										
2,5	116	84/94	58/68	40/49	26/32	17/20								
4	181	147	118	84/95	58/68	42/48	28/33	18/23						
6	273	223	178	139	105/117	79/89	55/64	37/42	26/31					
10				227	181	147	113/125	80/94	57/69					
16						236	189	151	120					
25	L. max. e	n mètres						231	185					
35				·					262					

TABLEAU C9 - PROTECTION PAR FUSIBLES DU TYPE gl

section	courant a	courant assigné des fusibles du type gl (A)												
(mm²)	16	20	25	32	40	50	63	80	100					
1,5	99/113	86/97	40/59	21/29	13/16	7/9								
2,5		134	110/122	67/84	41/51	25/33	13/20	8/11						
4			183	139	108/119	67/84	46/58	24/32	14/17					
6				210	165	139	94/113	55/70	33/41					
10					275	226	172	130	90/108					
16							283	217	168					
25	L. max. en metres							336	257					
35									367					

EXEMPLE:

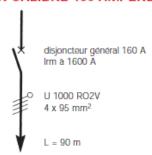
CALCUL DE LA LONGUEUR MAXI PROTÉGÉE PAR UN DISJONCTEUR CALIBRE 160 AMPÈRES :

calcul du coefficient C :

- neutre distribué

- cable U 1000 RO2 V → cuivre

- S. phase = S. neutre = 95 mm²


 $\rightarrow C = 0.58$

- S. phase = 95 mm²

– disjoncteur à usage général 160 Ampères $\}$ tableau C7 \rightarrow L. max. = 293 m

L. max. = 293 x 0,58 = 170 m

- → L. max. (170 m) > L. circuit (90 m)
- ightarrow La protection contre les courts-circuits mini est assurée

